Муниципальное автономное общеобразовательное учреждение средняя школа N2 7 р.п.Фролищи , Володарского района, Нижегородской области

Принято на заседании Педагогического совета

Протокол № 1 от 30.08.2022 г.

Утверждаю Директор МАОУ СШ № 7 *Массее* Палютина М.В.

Приказ № 56 от 30.08.2022 г.

Приложение 1 к основной образовательной программе среднего общего образования

Рабочая программа учебного предмета «Астрономия»

11 класс

на 2022-2023 учебный год

Разработчик программы: учитель физики Выдолоб Татьяна Николаевна Рабочая программа по астрономии для 11 класса (базовый уровень) разработана в соответствии с основной образовательной программой среднего общего образования МАОУ СШ № 7 и с учетом Рабочей программы воспитания МАОУ СШ № 7 на основе Примерной ООП СОО (одобрена решением федерального учебно-методического объединения по общему образованию (протокол от 28 июня 2016 г. № 2/16-з) и авторской рабочей программы по астрономии для 11 класса (базовый уровень) под ред. В.М.Чаругина. и ориентирована на использование учебников: УМК «Сферы» по астрономии для 10-11 классов. В.М.Чаругин. Базовый уровень, которые включены в федеральный перечень учебников, допущенных к использованию при реализации имеющих государственную аккредитацию образовательных программ начального общего, основного общего, среднего общего образования организациями, осуществляющими образовательную деятельность (Приказ Министерства просвещения Российской Федерации с изменениями от 23.12.2020 г. № 766).

Учебный план образовательного учреждения предусматривает изучение астрономии в объеме 34 часов в 11 классе (1 ч в неделю, 34 учебных недель).

При переходе на обучение с применением электронного обучения и дистанционных образовательных технологий организация образовательной деятельности осуществляется посредством апробированных и хорощо зарекомендовавших себя схем и подходов с использованием онлайн-уроков (видеоконференцсвязи), готовых модулей с конспектами уроков, ссылками на ресурсы и заданиями, онлайн- консультаций, с применением ресурсов электронных образовательных платформ в сети Интернет, рекомендованных Министерством просвещения Российской Федерации, используя технические средства обучения.

Личностные, метапредметные, предметные результаты

В результате изучения учебного предмета «Астрономия» на уровне среднего общего образования выпускник на базовом уровне получит:

- 1) сформированность представлений о строении Солнечной системы, эволюции звезд и Вселенной, пространственно-временных масштабах Вселенной;
- 2) понимание сущности наблюдаемых во Вселенной явлений;
- 3) владение основополагающими астрономическими понятиями, теориями, законами и закономерностями, уверенное пользование астрономической терминологией и символикой;
- 4) сформированность представлений о значении астрономии в практической деятельности человека и дальнейшем научно-техническом развитии;
- 5) осознание роли отечественной науки в освоении и использовании космического пространства и развитии международного сотрудничества в этой области.

СОДЕРЖАНИЕ КУРСА

БАЗОВЫЙ УРОВЕНЬ

Введение в астрономию

Строение и масштабы Вселенной, и современные наблюдения.

Какие тела заполняют Вселенную. Каковы их характерные размеры ирасстояния между ними. Какие физические условия встречаются вних. Вселенная расширяется. Где и как работают самые крупные оптические телескопы. Какастрономы исследуют гамма-излучение Вселенной. Что увиделигравитационно-волновые и нейтринные телескопы.

Астрометрия

Звёздное небо и видимое движение небесных светил

Какие звёзды входят в созвездия Ориона и Лебедя. Солнце движетсяпо эклиптике. Планеты совершают петлеобразное движение. Небесные координаты. Что такое небесный экватор и небесный меридиан. Как строятэкваториальную систему небесных координат. Как строятгоризонтальную систему небесных координат. Видимое движение планет и Солнца. Петлеобразное движение планет, попятное и прямое движение планет. Эклиптика, зодиакальные созвездия. Неравномерное движение Солнца по эклиптике.

Движение Луны и затмения Фазы Луны и синодический месяц, условия наступления солнечного илунного затмений. Почему происходят солнечные затмения. Сарос ипредсказания затмений. Время и календарь Звёздное и солнечное время, звёздный и тропический год. Устройство лунного и солнечного календаря, проблемы ихсогласования Юлианский и григорианский календари.

Небесная механика

Гелиоцентрическая система мира

Представления о строении Солнечной системы в античные времена ив средневековье. Гелиоцентрическая система мира, доказательствовращения Земли вокруг Солнца. Параллакс звёзд и определениерасстояния до них, парсек.

Законы Кеплера

Открытие И.Кеплером законов движения планет. Открытие законаВсемирного тяготения и обобщённые законы Кеплера. Определениемасс небесных тел.

Космические скорости

Расчёты первой и второй космической скорости и их физическийсмысл. Полёт Ю.А. Гагарина вокруг Земли по круговой орбите.

Межпланетные перелёты

Понятие оптимальной траектории полёта к планете. Время полёта кпланете и даты стартов.

Луна и её влияние на Землю

Лунный рельеф и его природа. Приливное взаимодействие междуЛуной и Землёй. Удаление Луны от Земли и замедление вращенияЗемли. Прецессия земной оси и предварение равноденствий.

Строение солнечной системы

Современные представления о Солнечной системе.

Состав Солнечной системы. Планеты земной группы и планеты-гиганты, их принципиальные различия. Облако комет Оорта и ПоясКойпера. Размеры тел солнечной системы.

Планета Земля

Форма и размеры Земли. Внутреннее строение Земли. Рольпарникового эффекта в формировании климата Земли.

Планеты земной группы

Исследования Меркурия, Венеры и Марса, их схожесть с Землёй. Какпарниковый эффект греет поверхность Земли и перегреваетатмосферу Венеры. Есть ли жизнь на Марсе. Эволюция орбитспутников Марса Фобоса и Деймоса.

Планеты-гиганты

Физические свойства Юпитера, Сатурна, Урана и Нептуна.Вулканическая деятельность на спутнике Юпитера Ио. Природа колецвокруг планет-гигантов.

Планеты-карлики и их свойства.

Малые тела Солнечной системы

Природа и движение астероидов. Специфика движения группастероидов Троянцев и Греков. Природа и движение комет. ПоясКойпера и Облако комет Оорта. Природа метеоров и метеоритов.

Метеоры и метеориты

Природа падающих звёзд, метеорные потоки и их радианты. Связьмежду метеорными потоками и кометами. Природа каменных ижелезных метеоритов. Природа метеоритных кратеров.

Практическая астрофизика и физика Солнца

Методы астрофизических исследований

Устройство и характеристики телескопов рефракторов и рефлекторов. Устройство радиотелескопов, радиоинтерферометры.

Солнце

Основные характеристики Солнца. Определение массы, температурыи химического состава Солнца. Строение солнечной атмосферы. Солнечная активность и её влияние на Землю и биосферу.

Внутреннее строение Солнца

Теоретический расчёт температуры в центре Солнца. Ядерныйисточник энергии и термоядерные реакции синтеза гелия из водорода,перенос энергии из центра Солнца наружу, конвективная зона. Нейтринный телескоп и наблюдения потока нейтрино от Солнца.

Звёзды

Основные характеристики звёзд

Определение основных характеристик звёзд: массы, светимости, температуры и химического состава. Спектральная классификациязвёзд и её физические основы. Диаграмма «спектральный класс» — светимость звёзд, связь между массой и светимостью звёзд.

Внутреннее строение звёзд

Строение звезды главной последовательности. Строение звёзд красных гигантов и сверхгигантов.

Белые карлики, нейтронные звёзды, пульсары и чёрные дыры

Строение звёзд белых карликов и предел на их массу — предел Чандрасекара. Пульсары и нейтронные звёзды. Природа чёрных дыр иих параметры.

Двойные, кратные и переменные звёзды

Наблюдения двойных и кратных звёзд. Затменно-переменные звёзды. Определение масс двойных звёзд. Пульсирующие переменные звёзды, кривые изменения блеска цефеид. Зависимость между светимостью ипериодом пульсаций у цефеид. Цефеиды — маяки во Вселенной, покоторым определяют расстояния до далёких скоплений и галактик.

Новые и сверхновые звёздыХарактеристики вспышек новых звёзд. Связь новых звёзд с теснымидвойными системами, содержащими звезду белый карлик.Перетекание вещества и ядерный взрыв на поверхности белогокарлика. Как взрываются сверхновые звёзды. Характеристикивспышек сверхновых звёзд. Гравитационный коллапс белого карликас массой Чандрасекара в составе тесной двойной звезды — вспышкасверхновой первого типа. Взрыв массивной звезды в конце своей эволюции — взрыв сверхновой второго типа. Наблюдение остатковвзрывов сверхновых звёзд. Эволюция звёзд: рождение, жизнь и смерть звёздРасчёт продолжительности жизни звёзд разной массы на главной последовательности. Переход в красные гиганты и сверхгиганты после исчерпания водорода. Спокой ная эволюция маломассивных звёзд, и гравитационный коллапс и взрыв с образованием ней тронной звезды или чёрной дыры массивной звезды. Определение возрастазвёздных скоплений и отдельных звёзд и проверка теории эволюции звёзд.

Млечный Путь

Газ и пыль в Галактике

Как образуются отражательные туманности. Почему светятсядиффузные туманности

Как концентрируются газовые и пылевые туманности в Галактике.

Рассеянные и шаровые звёздные скопления

Наблюдаемые свойства рассеянных звёздных скоплений. Наблюдаемые свойства шаровых звёздных скоплений. Распределениеи характер движения скоплений в Галактике. Распределение звёзд, скоплений, газа и пыли в Галактике. Сверхмассивная чёрная дыра в центре Галактики и космические лучи. Инфракрасные наблюдения движения звёзд в центре Галактики иобнаружение в центре Галактики сверхмассивной черной дыры.

Расчёт параметров сверхмассивной чёрной дыры. Наблюдениякосмических лучей и их связь со взрывами сверхновых звёзд.

Галактики

Как классифицировали галактики по форме и камертонная диаграмма Хаббла. Свойства спиральных, эллиптических и неправильных галактик. Красное смещение в спектрах галактик и определение расстояния до них.

Закон Хаббла

Вращение галактик и тёмная материя в них.

Активные галактики и квазары

Природа активности галактик, радиогалактики и взаимодействующиегалактики. Необычные свойства квазаров, их связь с ядрами галактики активностью чёрных дыр в них.

Скопления галактик

Наблюдаемые свойства скоплений галактик, рентгеновское излучение, температура и масса межгалактического газа, необходимость существования тёмной материи в скоплениях галактик. Оценка массытёмной материи в скоплениях. Ячеистая структура распределения галактики скоплений галактик.

Строение и эволюция Вселенной

Конечность и бесконечность Вселенной — парадоксыклассической космологии.

Закон всемирного тяготения и представления о конечности ибесконечности Вселенной. Фотометрический парадокс ипротиворечия между классическими

представлениями о строенииВселенной и наблюдениями. Необходимость привлечения общейтеории относительности для построения модели Вселенной. Связьмежду геометрических свойств пространства Вселенной сраспределением и движением материи в ней.

Расширяющаяся Вселенная

Связь средней плотности материи с законом расширения игеометрическими свойствами Вселенной. Евклидова и неевклидовагеометрия Вселенной. Определение радиуса и возраста Вселенной. Модель «горячей Вселенной» и реликтовое излучения. Образование химических элементов во Вселенной. Обилие гелия воВселенной и необходимость образования его на ранних этапахэволюции Вселенной. Необходимость не только высокой плотностивещества, но и его высокой температуры на ранних этапах эволюцииВселенной. Реликтовое излучение — излучение, которое осталось воВселенной от горячего и сверхплотного состояния материи на раннихэтапах жизни Вселенной. Наблюдаемые свойства реликтовогоизлучения. Почему необходимо привлечение общей теорииотносительности для построения модели Вселенной.

Современные проблемы астрономии

Ускоренное расширение Вселенной и тёмная энергия

Наблюдения сверхновых звёзд I типа в далёких галактиках и открытиеускоренного расширения Вселенной. Открытие силы всемирногоотталкивания. Тёмная энергия увеличивает массу Вселенной по мерееё расширения. Природа силы Всемирного отталкивания.

Обнаружение планет возле других звёзд.

Наблюдения за движением звёзд и определения масс невидимыхспутников звёзд, возмущающих их прямолинейное движение. Методыобнаружения экзопланет. Оценка условий на поверхностяхэкзопланет. Поиск экзопланет с комфортными условиями для жизнина них.

Поиски жизни и разума во Вселенной

Развитие представлений о возникновении и существовании жизни во Вселенной. Современные оценки количества высокоразвитых цивилизаций в Галактике. Попытки обнаружения и посылки сигналоввнеземным цивилизациям.

Тематическое планирование, в том числе с учетом рабочей программы воспитания с указанием количества часов, отводимых на освоение каждой темы

Реализация воспитательного потенциала урока (Модуль «Школьный урок» рабочей программы воспитания)

- установление доверительных отношений между учителем и его учениками, способствующих позитивному восприятию учащимися требований и просьб учителя, привлечению их внимания к обсуждаемой на уроке информации, активизации их познавательной деятельности;
- побуждение школьников соблюдать на уроке общепринятые нормы поведения, правила общения со старшими (учителями) и сверстниками (школьниками), принципы учебной дисциплины и самоорганизации;
- привлечение внимания школьников к ценностному аспекту изучаемых на уроках явлений, организация их работы с получаемой на уроке социально значимой информацией

- инициирование ее обсуждения, высказывания учащимися своего мнения по ее поводу, выработки своего к ней отношения;
- использование воспитательных возможностей содержания учебного предмета через демонстрацию детям примеров ответственного, гражданского поведения, проявления человеколюбия и добросердечности, через подбор соответствующих текстов для чтения, задач для решения, проблемных ситуаций для обсуждения в классе;
- применение на уроке интерактивных форм работы учащихся: интеллектуальных игр, стимулирующих познавательную мотивацию школьников; дидактического театра, где полученные на уроке знания обыгрываются в театральных постановках; дискуссий, которые дают учащимся возможность приобрести опыт ведения конструктивного диалога; групповой работы или работы в парах, которые учат школьников командной работе и взаимодействию с другими детьми;
- включение в урок игровых процедур, которые помогают поддержать мотивацию детей к получению знаний, налаживанию позитивных межличностных отношений в классе, помогают установлению доброжелательной атмосферы во время урока;
- организация шефства мотивированных и эрудированных учащихся над их неуспевающими одноклассниками, дающего школьникам социально значимый опыт сотрудничества и взаимной помощи;
- инициирование и поддержка исследовательской деятельности школьников в рамках реализации ими индивидуальных и групповых исследовательских проектов, что даст школьникам возможность приобрести навык самостоятельного решения теоретической проблемы, навык генерирования и оформления собственных идей, навык уважительного отношения к чужим идеям, оформленным в работах других исследователей, навык публичного выступления перед аудиторией, аргументирования и отстаивания своей точки зрения (урок-проект, урок-исследование).

Приложения к рабочей программе учебного предмета «Астрономия»

Календарно-тематическое планирование

11 класс

Всего часов в год -34 часов (34 учебных недель). Количество часов в неделю -1 час .

Nº	Тема	Кол- во	Дата	Дата					
п.п.		часов	план	факт					
	ВВЕДЕНИЕ В АСТРОНОМИЮ (1 час)								
1	Введение	1							
	АСТРОМЕТРИЯ (5 часов)								
2	Звёздное небо.	1							
3	Небесные координаты.	1							
4	Видимое движение планет и Солнца.	1							
5	Движение Луны и затмения.	1							
6	Время и календарь.	1							
	НЕБЕСНАЯ М	ЕХАНИК	А (3 часа)						
7	Системы мира.	1							
8	Законы Кеплера.	1							
9	Космические скорости и межпланетные перелёты.	1							
	СОЛНЕЧНАЯ СИСТЕМА (7 часов)								
10	Строение солнечной системы.	1							
11	Планета Земля.	1							

12	Луна и её влияние на Землю.	1								
13	Планеты земной группы.	1								
14	Планеты-гиганты и Планеты-карлики.	1								
15	Малые тела Солнечной системы.	1								
16	Происхождение Солнечной системы.	1								
	АСТРОФИЗИКА И ЗВЁЗДНАЯ АСТРОНОМИЯ (7 часов)									
17	Методы астрофизических исследований.	1								
18	Солнце.	1								
19	Внутреннее строение Солнца.	1								
20	Звёзды.	1								
21	Белые карлики, нейтронные звёзды, чёрные дыры, двойные и переменные звёзды.	1								
22	Новые и сверхновые звёзды.	1								
23	Эволюция звёзд.	1								
	МЛЕЧНЫЙ ПУТЬ – НА	АША ГАЈ	ПАКТИКА (3 часа)							
24	Газ и пыль в Галактике	1								
25	Звёздные скопления	1								
26	Чёрная дыра в центре Млечного Пути	1								
	ГАЛАКТИКИ И ВСЕЛЕННАЯ (5 часов)									
27	Классификация галактик.	1								
28	Активные галактики и квазары.	1								
29	Скопления галактик.	1								
30	Космология.	1								
31	Модель «горячей Вселенной».	1								
	СОВРЕМЕННЫЕ ПРОБЛЕМЫ АСТРОНОМИИ (2 часа)									

32	Вселенная и тёмная энергия.	1					
33	Поиск жизни и разума во Вселенной.	1					
	ОБОБЩАЮЩЕЕ ПОВТОРЕНИЕ (2 часа)						
34	Естественнонаучная картина мира, резерв	1					

Система оценки результатов освоения учебного предмета

ОЦЕНКА УСТНЫХ ОТВЕТОВ УЧАЩИХСЯ ПО ФИЗИКЕ, АСТРОНОМИИ

Оценка «**5**» ставится в том случае, если учащийся показывает верное понимание физической сущности рассматриваемых явлений и закономерностей, законов и теорий, дает точное определение и истолкование основных понятий, законов, теорий, а также правильное определение физических величин, их единиц и способов измерения; правильно выполняет чертежи, схемы и графики; строит ответ по собственному плану, сопровождает рассказ новыми примерами, умеет применить знания в новой ситуации при выполнении практических заданий; может установить связь между изучаемым и ранее изученным материалом по курсу физики, а также с материалом, усвоенным при изучении других предметов.

Оценка «**4**»- если ответ ученика удовлетворяет основным требованиям к ответу на оценку «5», но дан без использования собственного плана, новых примеров, без применения знаний в новой ситуации, без использования связей с ранее изученным материалом и материалом, усвоенным при изучении других предметов; если учащийся допустил одну ошибку или не более двух недочётов и может их исправить самостоятельно или с небольшой помощью учителя.

Оценка «З» ставится, если учащийся правильно понимает физическую сущность рассматриваемых явлений и закономерностей, но в ответе имеются отдельные пробелы в усвоении вопросов курса физики, не препятствующие дальнейшему усвоению программного материала; умеет применять полученные знания при решении простых задач с использованием готовых формул, но затрудняется при решении задач, требующих преобразования некоторых формул; допустил не более одной грубой ошибки и двух недочётов, не более одной грубой и одной негрубой ошибки, не более двух-трёх негрубых ошибок, одной негрубой ошибки и трёх недочётов; допустил четыре или пять недочётов.

Оценка «2» ставится, если учащийся не овладел основными знаниями и умениями в соответствии с требованиями программы и допустил больше ошибок и недочётов, чем необходимо для оценки «3».

Оценка «1» ставится в том случае, если ученик не может ответить ни на один из поставленных вопросов.

ОЦЕНКА ПИСЬМЕННЫХ КОНТРОЛЬНЫХ РАБОТ

Оценка «5» ставится за работу, выполненную полностью без ошибок и недочётов.

Оценка «**4**» ставится за работу, выполненную полностью, но при наличии в ней не более одной негрубой ошибки и одного недочёта, не более трёх недочётов.

Оценка «**3**» ставится, если ученик правильно выполнил не менее 2/3 всей работы или допустил не более одной грубой ошибки и двух недочётов, не более одной грубой и одной негрубой ошибки, не более трёх негрубых ошибок, одной негрубой ошибки и трёх недочётов, при наличии четырёх-пяти недочётов.

Оценка «2» ставится, если число ошибок и недочётов превысило норму для оценки «3» или правильно выполнено менее 2/3 всей работы.

Оценка «1» ставится, если ученик совсем не выполнил ни одного задания.

ОЦЕНКА ПРАКТИЧЕСКИХ РАБОТ

Оценка «5» ставится, если учащийся выполняет работу в полном объеме с соблюдением необходимой последовательности проведения опытов и измерений; самостоятельно и рационально монтирует необходимое оборудование; все опыты проводит в условиях и режимах, обеспечивающих получение правильных результатов и выводов; соблюдает требования правил техники безопасности; правильно и аккуратно выполняет все записи, таблицы, рисунки, чертежи, графики; правильно выполняет анализ погрешностей.

Оценка «4» ставится, если выполнены требования к оценке «5», но было допущено два-три недочёта, не более одной негрубой ошибки и одного недочёта.

Оценка «**3**» ставится, если работа выполнена не полностью, но объем выполненной части таков, что позволяет получить правильный результат и вывод; если в ходе проведения опыта и измерения были допущены ошибки.

Оценка «2» ставится, если работа выполнена не полностью, и объём выполненной части работы не позволяет сделать правильных выводов; если опыты, измерения, вычисления, наблюдения производились неправильно.

Оценка «1» ставится, если учащийся совсем не выполнил работу.

Во всех случаях оценка снижается, если ученик не соблюдал правила техники безопасности.

перечень ошибок

Грубые ошибки

- 1. Незнание определений основных понятий, законов, правил, основных положений теории, формул, общепринятых символов обозначения физических величин, единиц измерения.
- 2. Неумение выделить в ответе главное.
- 3. Неумение применять знания для решения задач и объяснения физических явлений.
- 4. Неумение читать и строить графики и принципиальные схемы.
- 5. Неумение подготовить к работе установку или лабораторное оборудование, провести опыт, необходимые расчёты, или использовать полученные данные для выводов.
- 6. Небрежное отношение к лабораторному оборудованию и измерительным приборам.
- 7. Неумение определить показание измерительного прибора.
- 8. Нарушение требований правил безопасного труда при выполнении эксперимента.

Негрубые ошибки

- 1. Неточности формулировок, определений, понятий, законов, теорий, вызванные неполнотой охвата основных признаков определяемого понятия, ошибки, вызванные несоблюдением условий проведения опыта или измерений.
- 2. Ошибки в условных обозначениях на принципиальных схемах, неточности чертежей, графиков, схем.

- 3. Пропуск или неточное написание наименований единиц физических величин.
- 4. Нерациональный выбор хода решения.

Недочёты

- 1. Нерациональные записи при вычислениях, нерациональные приёмы в вычислении, преобразовании и решении задач.
- 2. Арифметические ошибки в вычислениях, если эти ошибки грубо не искажают реальность полученного результата.
- 3. Отдельные погрешности в формулировке вопроса или ответа.
- 4. Небрежное выполнение записей, чертежей, схем, графиков.
- 5. Орфографические и пунктуационные ошибки.